Subject of the MapMod specialised master's degree in 2023

Date	May 22, 2023
TITLE	Numerical chaining between finite element multiphysics simulations
Project acronym	FE-MULTI
Image (recommended)	1964.001949.731935.471936.931929.671278.401264.131249.871235.601211.331207.071192.801178.531164.271160.00Haithem BEN HAMOUDA, PhD thesis, Mines Paris 2012
Caption of the image	Temperature field in a turbine blade geometry
Thesis work description	Safran Tech relies on multidomain heat flow simulations for casting of a metallic melt in a mold (i.e. filling, solidification, cooling) as part of the investment casting process modeling chain, with the objective to predict the formation of the grain structure. Based on strong coupling between the finite element (FE) software PROCAST and the cellular automaton (CA) method, computation times are not compatible with industrial exploitations. The objective to drastically reduce the computation times while maintaining predictivity is to use the simulation results from the multidomain heat flow simulations (PROCAST, FLOW3D or others) as an output that can be uploaded as an input of the multiphysics finite element sofware FusalurgY available at CEMEF for the calculation of the grain structure.
	Investment casting process
Type of project / Project partners	Industrial contract with company SAFRAN Tech
Objectives	 Definition of output data from the multidomain heat flow simulations software (PROCAST, FLOW 3D or others) as initial and boundary conditions at the metallic domain, including geometry and FE mesh. Data setting of FusalurgY to apply the recorded fields from the process simulation software (ProCast, FLOW3D or others). Simulations FusalurgY Analyses of the methodology and parametric studies

Thematic / Industrial Field	Aeronautics
Key-words	Simulation, Finite element, Forming process, Casting, Solidification
Skills and abilities requested	Engineer or master
Gross annual salary	
Location	CEMEF, Sophia Antipolis, France SAFRAN Tech, Gennevilliers, France
Contact, supervisor & research group(s)	Gildas Guillemot, 2MS Charles-André Gandin ; équipe 2MS Michel Bellet, 2MS